- (1) 0.4 times the positive load factor for the normal utility and commuter categories; or
- (2) 0.5 times the positive load factor for the acrobatic category.
- (c) Maneuvering load factors lower than those specified in this section may be used if the airplane has design features that make it impossible to exceed these values in flight.

[Doc. No. 4080, 29 FR 17955, Dec. 18, 1964, as amended by Amdt. 23–7, 34 FR 13088, Aug. 13, 1969; Amdt. 23–34, 52 FR 1829, Jan. 15, 1987; Amdt. 23–48, 61 FR 5144, Feb. 9, 1996]

§23.341 Gust loads factors.

- (a) Each airplane must be designed to withstand loads on each lifting surface resulting from gusts specified in §23.333(c).
- (b) The gust load for a canard or tandem wing configuration must be computed using a rational analysis, or may be computed in accordance with paragraph (c) of this section, provided that the resulting net loads are shown to be conservative with respect to the gust criteria of §23.333(c).
- (c) In the absence of a more rational analysis, the gust load factors must be computed as follows—

$$n = 1 + \frac{K_g U_{de} V a}{498 (W/S)}$$

Where-

 $K_{\rm g}$ =0.88 $\mu_{\rm g}$ /5.3+ $\mu_{\rm g}$ =gust alleviation factor; $\mu_{\rm g}$ =2(W/S)/ ρ Cag=airplane mass ratio;

 U_{de} =Derived gust velocities referred to in $\S23.333(c)$ (f.p.s.);

 $\rho = Density \ of \ air \ (slugs/cu.ft.);$

W/S =Wing loading (p.s.f.) due to the applicable weight of the airplane in the particular load case.

W/S =Wing loading (p.s.f.);

C =Mean geometric chord (ft.);

V =Airplane equivalent speed (knots); and

a =Slope of the airplane normal force coefficient curve C_{NA} per radian if the gust loads are applied to the wings and horizontal tail surfaces simultaneously by a rational method. The wing lift curve slope C_L per radian may be used when the gust load is applied to the wings only and the horizontal tail gust loads are treated as a separate condition.

[Amdt. 23–7, 34 FR 13088, Aug. 13, 1969, as amended by Amdt. 23–42, 56 FR 352, Jan. 3, 1991; Amdt. 23–48, 61 FR 5144, Feb. 9, 1996]

§23.343 Design fuel loads.

- (a) The disposable load combinations must include each fuel load in the range from zero fuel to the selected maximum fuel load.
- (b) If fuel is carried in the wings, the maximum allowable weight of the airplane without any fuel in the wing tank(s) must be established as "maximum zero wing fuel weight," if it is less than the maximum weight.
- (c) For commuter category airplanes, a structural reserve fuel condition, not exceeding fuel necessary for 45 minutes of operation at maximum continuous power, may be selected. If a structural reserve fuel condition is selected, it must be used as the minimum fuel weight condition for showing compliance with the flight load requirements prescribed in this part and—
- (1) The structure must be designed to withstand a condition of zero fuel in the wing at limit loads corresponding to:
- (i) Ninety percent of the maneuvering load factors defined in §23.337, and
- (ii) Gust velocities equal to 85 percent of the values prescribed in §23.333(c).
- (2) The fatigue evaluation of the structure must account for any increase in operating stresses resulting from the design condition of paragraph (c)(1) of this section.
- (3) The flutter, deformation, and vibration requirements must also be met with zero fuel in the wings.

[Doc. No. 27805, 61 FR 5144, Feb. 9, 1996]

§23.345 High lift devices.

- (a) If flaps or similar high lift devices are to be used for takeoff, approach or landing, the airplane, with the flaps fully extended at $V_{\rm F}$, is assumed to be subjected to symmetrical maneuvers and gusts within the range determined by—
- (1) Maneuvering, to a positive limit load factor of 2.0; and
- (2) Positive and negative gust of 25 feet per second acting normal to the flight path in level flight.
- (b) V_F must be assumed to be not less than 1.4 V_S or 1.8 V_{SF} , whichever is greater, where—

§ 23.347

- (1) V_S is the computed stalling speed with flaps retracted at the design weight; and
- (2) V_{SF} is the computed stalling speed with flaps fully extended at the design weight.
- (3) If an automatic flap load limiting device is used, the airplane may be designed for the critical combinations of airspeed and flap position allowed by that device.
- (c) In determining external loads on the airplane as a whole, thrust, slipstream, and pitching acceleration may be assumed to be zero.
- (d) The flaps, their operating mechanism, and their supporting structures, must be designed to withstand the conditions prescribed in paragraph (a) of this section. In addition, with the flaps fully extended at $V_{\rm F}$, the following conditions, taken separately, must be accounted for:
- (1) A head-on gust having a velocity of 25 feet per second (EAS), combined with propeller slipstream corresponding to 75 percent of maximum continuous power; and
- (2) The effects of propeller slipstream corresponding to maximum takeoff power.

[Doc. No. 27805, 61 FR 5144, Feb. 9, 1996]

§23.347 Unsymmetrical flight conditions.

- (a) The airplane is assumed to be subjected to the unsymmetrical flight conditions of §§23.349 and 23.351. Unbalanced aerodynamic moments about the center of gravity must be reacted in a rational or conservative manner, considering the principal masses furnishing the reacting inertia forces.
- (b) Acrobatic category airplanes certified for flick maneuvers (snap roll) must be designed for additional asymmetric loads acting on the wing and the horizontal tail.

[Doc. No. 4080, 29 FR 17955, Dec. 18, 1964, as amended by Amdt. 23–48, 61 FR 5144, Feb. 9, 1996]

§23.349 Rolling conditions.

The wing and wing bracing must be designed for the following loading conditions:

(a) Unsymmetrical wing loads appropriate to the category. Unless the following values result in unrealistic

- loads, the rolling accelerations may be obtained by modifying the symmetrical flight conditions in §23.333(d) as follows:
- (1) For the acrobatic category, in conditions A and F, assume that 100 percent of the semispan wing airload acts on one side of the plane of symmetry and 60 percent of this load acts on the other side.
- (2) For normal, utility, and commuter categories, in Condition A, assume that 100 percent of the semispan wing airload acts on one side of the airplane and 75 percent of this load acts on the other side.
- (b) The loads resulting from the aileron deflections and speeds specified in §23.455, in combination with an airplane load factor of at least two thirds of the positive maneuvering load factor used for design. Unless the following values result in unrealistic loads, the effect of aileron displacement on wing torsion may be accounted for by adding the following increment to the basic airfoil moment coefficient over the aileron portion of the span in the critical condition determined in §23.333(d):

 $\Delta c_m = -0.01\delta$

where-

 Δc_m is the moment coefficient increment; and δ is the down aileron deflection in degrees in the critical condition.

[Doc. No. 4080, 29 FR 17955, Dec. 18, 1964, as amended by Amdt. 23–7, 34 FR 13088, Aug. 13, 1969; Amdt. 23–34, 52 FR 1829, Jan. 15, 1987; Amdt. 23–48, 61 FR 5144, Feb. 9, 1996]

§23.351 Yawing conditions.

The airplane must be designed for yawing loads on the vertical surfaces resulting from the loads specified in §§ 23.441 through 23.445.

[Doc. No. 4080, 29 FR 17955, Dec. 18, 1964; 30 FR 258, Jan. 9, 1965, as amended by Amdt. 23–42, 56 FR 352, Jan. 3, 1991]

§23.361 Engine torque.

- (a) Each engine mount and its supporting structure must be designed for the effects of—
- (1) A limit engine torque corresponding to takeoff power and propeller speed acting simultaneously with 75 percent of the limit loads from flight condition A of §23.333(d);